DoubtEnsemble
¶
A pipeline to find bad labels.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
reasons |
kwargs with (name, reason)-pairs |
required |
Usage:
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from doubtlab.ensemble import DoubtEnsemble
from doubtlab.reason import ProbaReason, WrongPredictionReason
X, y = load_iris(return_X_y=True)
model = LogisticRegression(max_iter=1_000)
model.fit(X, y)
reasons = {
"proba": ProbaReason(model=model),
"wrong_pred": WrongPredictionReason(model=model),
}
doubt = DoubtEnsemble(**reasons)
Source code in doubtlab/ensemble.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
|
get_indices(X, y=None)
¶
Calculates indices worth checking again.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
the |
required | |
y |
the |
None
|
Usage:
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from doubtlab.ensemble import DoubtEnsemble
from doubtlab.reason import ProbaReason, WrongPredictionReason
X, y = load_iris(return_X_y=True)
model = LogisticRegression(max_iter=1_000)
model.fit(X, y)
reasons = {
"proba": ProbaReason(model=model),
"wrong_pred": WrongPredictionReason(model=model),
}
doubt = DoubtEnsemble(**reasons)
indices = doubt.get_indices(X, y)
Source code in doubtlab/ensemble.py
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
|
get_predicates(X, y=None)
¶
Returns a sorted dataframe that shows the reasoning behind the sorting.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
the |
required | |
y |
the |
None
|
Usage:
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from doubtlab.ensemble import DoubtEnsemble
from doubtlab.reason import ProbaReason, WrongPredictionReason
X, y = load_iris(return_X_y=True)
model = LogisticRegression(max_iter=1_000)
model.fit(X, y)
reasons = {
"proba": ProbaReason(model=model),
"wrong_pred": WrongPredictionReason(model=model),
}
doubt = DoubtEnsemble(**reasons)
predicates = doubt.get_predicates(X, y)
Source code in doubtlab/ensemble.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
|