Sense2VecEncoder¶
embetter.text.Sense2VecEncoder
¶
Create a Sense2Vec encoder, meant to help when encoding phrases as opposed to sentences.
Parameters
Name | Type | Description | Default |
---|---|---|---|
path |
str |
path to downloaded model | required |
Usage
import pandas as pd
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression
from embetter.grab import ColumnGrabber
from embetter.text import Sense2VecEncoder
# Let's suppose this is the input dataframe
dataf = pd.DataFrame({
"text": ["positive sentiment", "super negative"],
"label_col": ["pos", "neg"]
})
# This pipeline grabs the `text` column from a dataframe
# which is then passed to the sense2vec model.
text_emb_pipeline = make_pipeline(
ColumnGrabber("text"),
Sense2VecEncoder("path/to/s2v")
)
X = text_emb_pipeline.fit_transform(dataf, dataf['label_col'])
transform(self, X, y=None)
¶
Show source code in text/_s2v.py
45 46 47 |
|
Transforms the phrase text into a numeric representation.