Naive Bayes¶
sklego.naive_bayes.GaussianMixtureNB
¶
Bases: BaseEstimator
, ClassifierMixin
The GaussianMixtureNB
estimator is a naive bayes classifier that uses a mixture of gaussians instead of
merely a single one. In particular it trains a GaussianMixture
model for each class in the target and for each
feature in the data, on the subset of X
where y == class
.
You can pass any keyword parameter that scikit-learn's GaussianMixture model uses and it will be passed along to each of the models.
Attributes:
Name | Type | Description |
---|---|---|
gmms_ |
dict[int, List[GaussianMixture]]
|
A dictionary of Gaussian Mixture Models, one for each class. |
classes_ |
np.ndarray of shape (n_classes,)
|
The classes seen during |
n_features_in_ |
int
|
The number of features seen during |
num_fit_cols_ |
int
|
Deprecated, please use |
Source code in sklego/naive_bayes.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
|
fit(X, y)
¶
Fit the GaussianMixtureNB
estimator using X
and y
as training data by fitting a GaussianMixture
model
for each class in the target and for each feature in the data, on the subset of X
where y == class
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
array-like of shape (n_samples, n_features )
|
The training data. |
required |
y
|
array-like of shape (n_samples,)
|
The target values. |
required |
Returns:
Name | Type | Description |
---|---|---|
self |
GaussianMixtureNB
|
The fitted estimator. |
Source code in sklego/naive_bayes.py
predict(X)
¶
Predict labels for X
using fitted estimator and predict_proba
method, by picking the class with the
highest probability.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
array-like of shape (n_samples, n_features)
|
The data to predict. |
required |
Returns:
Type | Description |
---|---|
array-like of shape (n_samples,)
|
The predicted data. |
Source code in sklego/naive_bayes.py
predict_proba(X)
¶
Predict probabilities for X
using fitted estimator by summing the probabilities of each gaussian for each
class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
array-like of shape (n_samples, n_features)
|
The data to predict. |
required |
Returns:
Type | Description |
---|---|
array-like of shape (n_samples, n_classes)
|
The predicted probabilities. |
Source code in sklego/naive_bayes.py
sklego.naive_bayes.BayesianGaussianMixtureNB
¶
Bases: BaseEstimator
, ClassifierMixin
The BayesianGaussianMixtureNB
estimator is a naive bayes classifier that uses a bayesian mixture of gaussians
instead of merely a single one. In particular it trains a BayesianGaussianMixture
model for each class in the
target and for each feature in the data, on the subset of X
where y == class
.
You can pass any keyword parameter that scikit-learn's
BayesianGaussianMixture
model uses and it will be passed along to each of the models.
Attributes:
Name | Type | Description |
---|---|---|
gmms_ |
dict[int, List[BayesianGaussianMixture]]
|
A dictionary of Gaussian Mixture Models, one for each class. |
classes_ |
np.ndarray of shape (n_classes,)
|
The classes seen during |
n_features_in_ |
int
|
The number of features seen during |
num_fit_cols_ |
int
|
Deprecated, please use |
Source code in sklego/naive_bayes.py
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
|
fit(X, y)
¶
Fit the BayesianGaussianMixtureNB
estimator using X
and y
as training data by fitting a
BayesianGaussianMixture
model for each class in the target and for each feature in the data, on the subset of
X
where y == class
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
array-like of shape (n_samples, n_features )
|
The training data. |
required |
y
|
array-like of shape (n_samples,)
|
The target values. |
required |
Returns:
Name | Type | Description |
---|---|---|
self |
BayesianGaussianMixtureNB
|
The fitted estimator. |
Source code in sklego/naive_bayes.py
predict(X)
¶
Predict labels for X
using fitted estimator and predict_proba
method, by picking the class with the
highest probability.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
array-like of shape (n_samples, n_features)
|
The data to predict. |
required |
Returns:
Type | Description |
---|---|
array-like of shape (n_samples,)
|
The predicted data. |
Source code in sklego/naive_bayes.py
predict_proba(X)
¶
Predict probabilities for X
using fitted estimator by summing the probabilities of each gaussian for each
class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
array-like of shape (n_samples, n_features)
|
The data to predict. |
required |
Returns:
Type | Description |
---|---|
array-like of shape (n_samples, n_classes)
|
The predicted probabilities. |