Neighbors¶
sklego.neighbors.BayesianKernelDensityClassifier
¶
Bases: BaseEstimator
, ClassifierMixin
The BayesianKernelDensityClassifier
estimator trains using Kernel Density estimations to generate the joint
distribution.
You can pass any keyword parameter that scikit-learn's KernelDensity model uses and it will be passed along.
Attributes:
Name | Type | Description |
---|---|---|
classes_ |
np.ndarray of shape (n_classes,)
|
The classes seen during |
models_ |
dict[int, KernelDensity]
|
The models for each class seen during |
priors_logp_ |
dict
|
The log priors for each class seen during |
Source code in sklego/neighbors.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
|
fit(X, y)
¶
Fit the BayesianKernelDensityClassifier
estimator using X
and y
as training data by fitting a
KernelDensity
model for each class on the subset of X where y == class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
array-like of shape (n_samples, n_features)
|
The training data. |
required |
y
|
array-like of shape (n_samples,)
|
The target values. |
required |
Returns:
Name | Type | Description |
---|---|---|
self |
BayesianKernelDensityClassifier
|
The fitted estimator. |
Source code in sklego/neighbors.py
predict(X)
¶
Predict labels for X
using fitted estimator and predict_proba()
method, by taking the class with the
highest probability.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
array-like of shape (n_samples, n_features)
|
The data to predict. |
required |
Returns:
Type | Description |
---|---|
array-like of shape (n_samples,)
|
The predicted data. |
Source code in sklego/neighbors.py
predict_proba(X)
¶
Predict probabilities for X
using fitted estimator and the joint distribution.
The returned estimates for all classes are in the same order found in the .classes_
attribute.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
array-like of shape (n_samples, n_features)
|
The data to predict. |
required |
Returns:
Type | Description |
---|---|
array-like of shape (n_samples, n_classes)
|
The predicted probabilities for each class, ordered as in |