from hulearn.common import *
¶
df_to_dictlist(dataf)
¶
Show source code in hulearn/common.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
|
Helper function, takes a dataframe and turns it into a list of
dictionaries. This might make it easier to write if else chains
in FunctionClassifier
.
Usage:
import pandas as pd
from hulearn.common import df_to_dictlist
df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
res = df_to_dictlist(df)
assert res == [{"a": 1, "b": 4}, {"a": 2, "b": 5}, {"a": 3, "b": 6}]
flatten(nested_iterable)
¶
Show source code in hulearn/common.py
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
|
Helper function, returns an iterator of flattened values from an arbitrarily nested iterable.
Usage:
from hulearn.common import flatten
res1 = list(flatten([['test1', 'test2'], ['a', 'b', ['c', 'd']]]))
res2 = list(flatten(['test1', ['test2']]))
assert res1 == ['test1', 'test2', 'a', 'b', 'c', 'd']
assert res2 == ['test1', 'test2']