InteractiveCharts
¶
This tool allows you to interactively "draw" a model.
Parameters
Name | Type | Description | Default |
---|---|---|---|
dataf |
the dataframe to make a single interactive chart for | required | |
labels |
the labels to be drawn, if str we assume a column from the dataframe is chosen, if list we |
required | |
color |
you can manually override the color of the dots to be determined by a column in a dataframe. This setting is useful when you want to input a list of labels but still want to color the dots based on a column value. | None |
Usage:
from sklego.datasets import load_penguins
from hulearn.experimental.interactive import InteractiveCharts
df = load_penguins(as_frame=True)
charts = InteractiveCharts(df, labels="species")
add_chart(self, x, y, size=5, alpha=0.5, width=400, height=400, legend=True)
¶
Show source code in experimental/interactive.py
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
|
Generate an interactive chart to a cell.
The supported actions include:
- Add patch or multi-line: Double tap to add the first vertex, then use tap to add each subsequent vertex,
to finalize the draw action double tap to insert the final vertex or press the <
key. - Move patch or ulti-line: Tap and drag an existing patch/multi-line, the point will be dropped once you let go of the mouse button.
- Delete patch or multi-line: Tap a patch/multi-line to select it then press <
> key while the mouse is within the plot area.
Parameters
Name | Type | Description | Default |
---|---|---|---|
x |
the column from the dataset to place on the x-axis | required | |
y |
the column from the dataset to place on the y-axis | required | |
size |
the size of the drawn points | 5 |
|
alpha |
the alpha (see-through-ness) of the drawn points | 0.5 |
|
width |
the width of the chart | 400 |
|
height |
the height of the chart | 400 |
|
legend |
show a legend as well | True |
Usage:
from sklego.datasets import load_penguins
from hulearn.experimental.interactive import InteractiveCharts
df = load_penguins(as_frame=True)
charts = InteractiveCharts(df, labels="species")
# Next notebook cell
charts.add_chart(x="bill_length_mm", y="bill_depth_mm")
# Next notebook cell
charts.add_chart(x="flipper_length_mm", y="body_mass_g")
# After drawing a model, export the data
json_data = charts.data()
parallel_coordinates
¶
Creates an interactive parallel coordinates chart to help with classification tasks.
Parameters
Name | Type | Description | Default |
---|---|---|---|
dataf |
the dataframe to render | required | |
label |
the column that represents the label, will be used for coloring | required | |
height |
the height of the chart, in pixels | 200 |
Usage:
from hulearn.datasets import load_titanic
from hulearn.experimental.interactive import parallel_coordinates
df = load_titanic(as_frame=True)
parallel_coordinates(df, label="survived", height=200)